Implementation of CKD-EPI for calculation of eGFR at S.V.U.H.

Janice Reeve PhD., FRCPath

Principal Clinical Biochemist

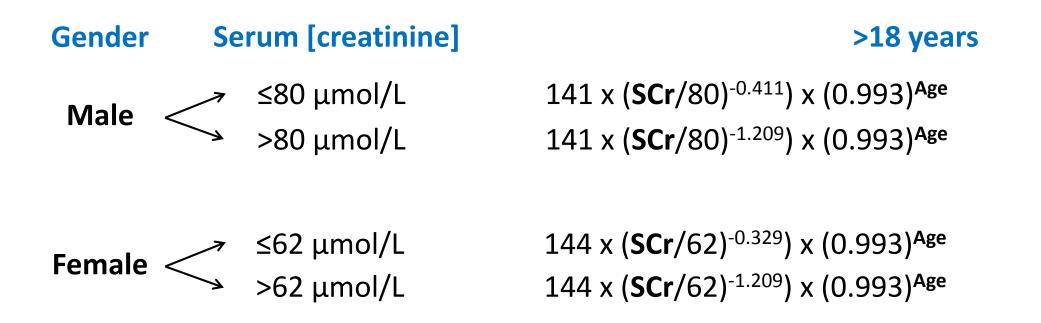
Glomerular Filtration Rate

- Just one of the kidneys functions decreased GFR sign of kidney disease
- Measured using plasma clearance of exogenous markers
- Estimates (eGFR) based on:
 - Endogenous filtration markers
 - Variables associated with non-GFR determinants of concentration
- eGFR more sensitive and accurate than filtration marker concentration alone
- Inaccuracies between eGFR and GFR
 - Inaccuracies in endogenous filtration marker assays
 - Differences in development datasets vs 'real-life'
- Imprecision in estimates
 - Random variation in surrogates of non-GFR determinants

Modification of Diet and Renal Disease Study eGFR

- Relationship between creatinine and GFR non-linear
- Multicentre, controlled trial; evaluated the effect of dietary protein restriction & BP control renal disease progression
- Formula based on 1,628 CKD patients
 - GFR <60 mL/min/1.73m² (¹²⁵I-iothalamate clearance)
 - 4 variable equation; age (≥18 years), gender, ethnicity, serum creatinine conc.
 - Modified differences in creatinine methods
- At SVUH, Roche creatinine enzymatic assay standardised to ID-MS

175 x (SCr µmol/L x 0.011312)^{-1.154} x (Age)^{-0.203} x 0.742 (if female) x 1.212 (if black)



Chronic Kidney Disease Epidemiology Collaboration eGFR formula

- To be as accurate as MDRD at low GFR AND more accurate at higher GFR
- Applies different coefficients to the same 4 MDRD variables
- Developed using 8,254 subjects
 - Wide range of kidney function
 - High number of black participants (32% vs 12% MDRD)
 - GFR measured using ¹²⁵I-iothalamate clearance
 - Serum creatinine traceable to ID-MS
- Does not overcome the limitations inherent to creatinine based eGFR

CKD-EPI gender based serum creatinine equations for eGFR

[x 1.159, if black]

Kidney Disease Improving Global Outcomes GFR and ACR categories

categories (ml/min/ 1.73 m²)

GFR

CKD diagnosed over 3 months

oving Global CR categories			Persistent albuminuria categories Description and range				
					A2	Аз	
			Normal to mildly increased	Moderately increased	Severely increased		
าร		<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol			
range	G1	Normal or high	≥90	No CKD without			
	G2	Mildly decreased	60 - 89	markers of kidney damage			Incre
and	G3a	Mildly to moderately decreased	45-59				ncreasing
Description	G3b	Moderately to severely decreased	30-44				g risk
	G4	Severely decreased	15-29				
	G5	Kidney failure	<15				↓

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

CKD-EPI versus MDRD eGFR: validation dataset

Variable and Equation	All Patients	Patients with estimated GFR <60 ml/min/1.73 m ²	Patients with estimated GFR≥60 ml/min/1.73 m ²					
Median difference (95% CI), mL/min per 1.73 m 2^{\dagger}								
CKD-EPI	2.5 (2.1 - 2.9)	2.1 (1.7 - 2.4)	3.5 (2.6 - 4.5)					
MDRD Study	5.5 (5.0 - 5.9)	3.4 (2.9 - 4.0)	10.6 (9.8 - 11.3)					
Interquartile range for differences (95% CI) - mL/min per 1.73 m ^{2‡}								
CKD-EPI	16.6 (15.9 - 17.3)	11.3 (10.7 - 12.1)	24.2 (22.8 - 25.3)					
MDRD Study	18.3 (17.4 - 19.3)	12.9 (12.0 - 13.6)	25.7 (24.4 - 27.1)					
P ₃₀ (95% CI) - % [§]								
CKD-EPI	84.1 (83.0 - 85.3)	79.9 (78.1 - 81.7)	88.3 (86.9 - 89.7)					
MDRD Study	80.6 (79.5 - 82.0)	77.2 (75.5 - 79.0)	84.7 (83.0 - 86.3)					

CKD-EPI = Chronic Kidney Disease Epidemiology Collaboration; GFR = glomerular filtration rate; MDRD = Modification of Diet in Renal Disease.

*

To convert GFR from mL/min per 1.73 m2 to mL/s per 1.73 m2, multiply by 0.0167.

Median difference refers to measured GFR minus estimated GFR.

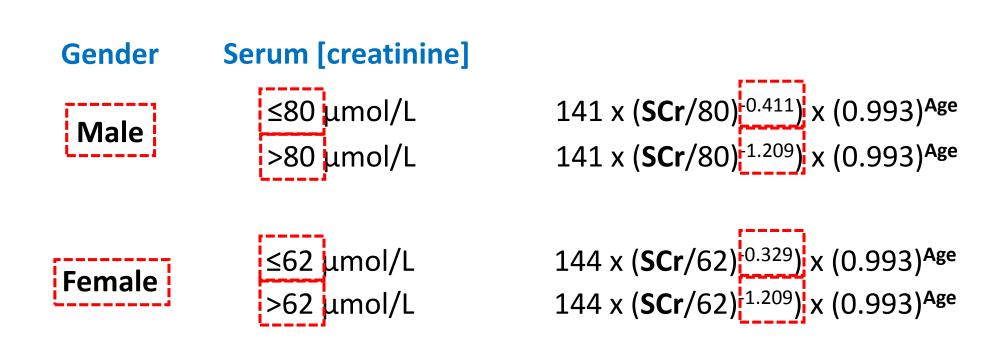
⁴Interquartile range refers to the 25–75th percentile.

⁹P30 refers to percentage of GFR estimates that are within 30% of measured GFR.

Modified from Levey *et al* Ann Intern Med, 2009 – Vol 50, no. 9 pp 604

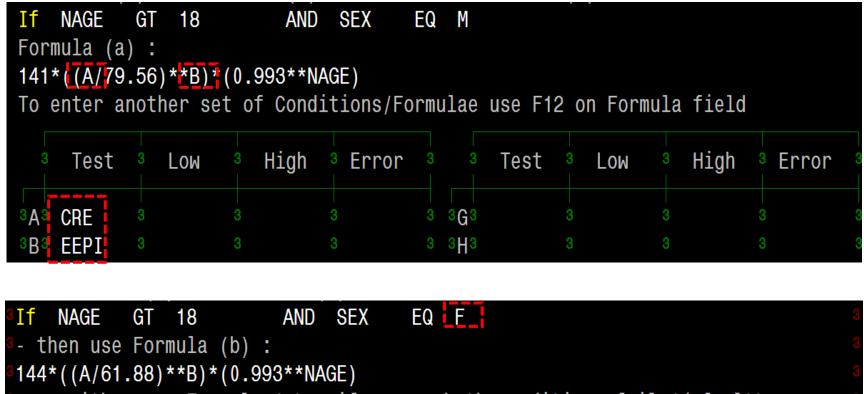
Comparison of eGFR by MDRD versus CKD-EPI

- Better accuracy: classification of GFR stage correct more often than classification by MDRD
 - 63% vs 34%, p<0.001
- **Reduced CKD prevalence**: produces higher eGFRs at values >30 mL/min/1.73m² vs MDRD
 - Lower CKD prevalence; 11.5 vs 13.1 %
 - Reclassification more evident in <65 years, females and non-blacks
 - Better eGFR and fewer co-morbidities means reclassification = better outcomes
- CKD prevalence still high in elderly
- More targeted healthcare resources



CKD-EPI eGFR and the guidelines

- Serum creatinine and eGFR to be reported
- KDIGO Clinical Practice Guideline (2012)
 - Report eGFR in adults using the 2009 CKD-EPI creatinine equation
 - An alternative is acceptable if it demonstrates improved accuracy to this equation
- NICE CKD in adults: assessment and management Clinical Guideline 182 (2014)
 - CKD-EPI eGFR based on serum creatinine
 - Calibration traceable to SRM; zero bias to ID-MS
- ACB statement (2016) supports the NICE recommendations
 - Suggests an implementation date of no later than April 2017


Setting up CKD-EPI on APEX: Step 1 Derivation of an exponential figure (EEPI) by rule

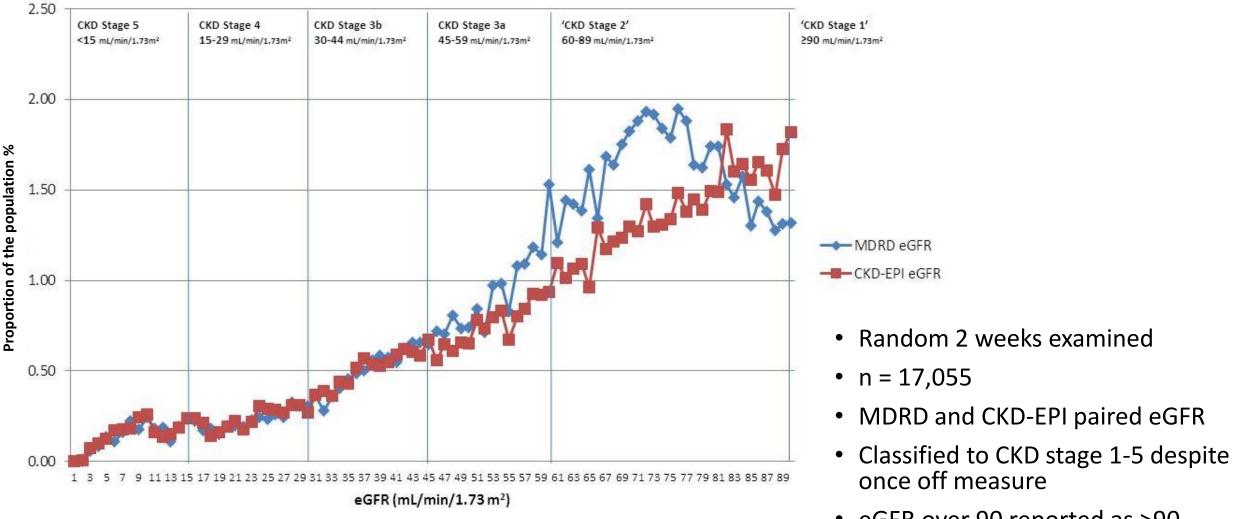
OR

Setting up CKD-EPI on APEX: Step 2 Gender specific eGFR using the derived exponential

³or - either use Formula (c) - if one or both conditions fail (default)

- or Condition Failure Comment : NEGFR

Description : Patient gender not specified. Unable to calculate EGFR

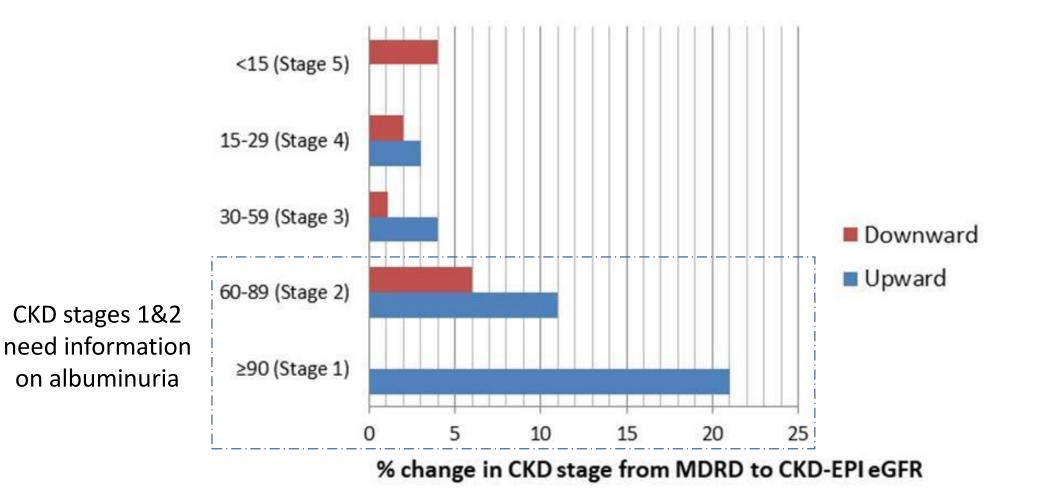


'Dual reporting' of MDRD eGFR and (suppressed) CKD-EPI eGFR

123456 DUMMY, JOHN		03/12/1969 PATHR		
	ogy Reports. 07/07/2017			
Specimen No : BB871574Q Biochemist	ry <pg< td=""><td>Up> for earlier</td><td></td><td></td></pg<>	Up> for earlier		
07/07/2017 09:37 123456 ROCHE,			3/1979 PATHR	
Creatinine 4 OUR LADY'S CLOSE Exponent EPI-e	Pathology Re	ports 07/07/2017 09:3	38 6	
	576H Biochemistrv		for earlier	
CKD-EPI eGFR Estimated GFR 07/07/2017 09:38 Se	123456 DUMMY, M SVUH	Pathology Report		05/2005 PATHR
Comments : Creatinine			07/07/2017 09	
EGFR result Exponent EPI-eGFR Auth	Specimen No : BB871577Y	Biochemistry	<pgup></pgup>	⊳ for earlier
CKD-EPI eGFR	07/07/2017 09:38 Serum			
Estimated GFR	Creatinine Exponent EPI-eGFR	56 umol/L ^-0.411	(59	to 104) Auth
	Auth	-0.411		
	CKD-EPI eGFR	a fan thaan (10 yaans of		Auth
	Estimated GFR	e for those <18 years of	aye.	Auth
	eGFR is not available	for those <18 years of	age.	Auth

eGFR and CKD stage by MDRD and CKD-EPI equations

 eGFR over 90 reported as >90 mL/min/1.73m²


Reclassification of eGFR stage: CKD-EPI vs MDRD eGFR

- 'Reclassification' if CKD stage changed with CKD-EPI eGFR
- 14,150 (83%) patients remained in the same CKD stage
- 2,905 (17%) patients were reclassified
 - 13.6% had a better eGFR
 - 3.4% had a worse eGFR

	Number (%)	Reclassified by CKD-EPI; Number (%)		
All	17,055	2,905 (17%)		
<65 years	9,210 (54%)	2,134 (23.2%) + 771 (9.8%)		
≥65 years	7,845 (46%)			
Male	8,127	1,200 (14.7%)		
<65 years	4,279 (52.7%)	827 (19.3%)		
≥65 years	3,848 (47.3%)	373 (9.7%)		
Female	8,928	1,705 (19.1%) 年		
<65 years	4,931 (55.2%)	1,307 (26.5%) 🛑		
≥65 years	3,997 (44.8%)	398 (10%)		

Reclassification of eGFR stage: CKD-EPI vs MDRD eGFR

CKD stages 3 to 5: CKD-EPI vs MDRD eGFR

		e 3-5 classif of populatio	Change in CKD (%)	
	MDRD & CKD-EPI	MDRD	CKD-EPI	due to CKD-EPI
All (17,055)	23.4%	25.8%	23.9%	324 (1.9%) 🦊
<65 years (9,210)	8.3%	11.5%	8.3%	295 (3.2%) 🦊
≥65 years (7,845)	41.2%	42.7%	42.3%	31 (0.4%) 🖊
≥75 years (4,394)	50.8%	51.1%	53.1%	88 (2.0%) 🚺

- CKD-EPI eGFR resulted in 324 less patients classified with CKD
 - 91% were <65 years
- Of the ≥75 year olds, 2% more patients were classified with CKD using CKD-EPI eGFR
 - These 88 patients would not have been classified by MDRD eGFR
- The increase in CKD diagnosis in the ≥75's ? compounding risks / faster progression

APEX reports

Creatinine	96	umol/L	ĺ	59 to 104)	
Comments :						
Please note:from 07/08/	2018 Estin	ated GFR wil	l be			
calculated using the CKD-EPI formula.						
Please refer to MEMO-EXTCHEM05 EPI dated 30/07/2018						
Exponent EPI-eGFR	^-1 . 2	209				
Estimated GFR	67	mL/min/1.7	3sq.m			

Creatinine	265	umol/L	(59 to 104)			
Comments :							
Please note:from 07/08/2018 Estimated GFR will be							
calculated using the CK	calculated using the CKD-EPI formula.						
Please refer to MEMO-EX	Please refer to MEMO-EXTCHEM05 EPI dated 30/07/2018						
Exponent EPI-eGFR ^-1.209							
Estimated GFR 19 mL/min/1.73sq.m Comments :							
EGFR result biochemically consistent with CKD stage 4.							

Changing to CKD-EPI eGFR at S.V.U.H.

1. DRIVERS FOR CHANGE

- Guidelines
 - Increased accuracy in individuals with better renal function
 - Reduces prevalence of CKD (focused workload)
- Renal physicians on board
 - Cumulative report requested (same test code)

2. COMMUNICATION

- Discussed in-house; meetings, emails and internal memo
- Memo sent to users with lab contact details
 - Change over date provided
 - Indicated MDRD eGFR was being replaced and why *i.e.* adoption internationally, improved accuracy

Changing to CKD-EPI eGFR at S.V.U.H.

3. IMPLEMENTATION INTO IT SYSTEM

- Impact on the IT system was minimal
 - Required dialog with CSC/iSOFT
 - Same test code, comments, results autovalidated

4. IMPACT?

- Differences observed by clinicians is equivalent to reporting any analyte using a new assay
- Minimal; no feedback/complaints = seamless success?

5. UNDERSTANDING?

- Assumption made that users understand limitations of creatinine based formulae
- Ideally requires on-going educational effort: strengths versus weaknesses

Acknowledgements

- Prof Pat Twomey (Consultant Chemical Pathologist/Head of Department)
- Marion Davis (Senior Clinical Biochemist)
- Clinical Biochemistry staff at SVUH

